Aneka Ragam Makalah

Makalah Keimanan dan Ketaqwaan dengan Pembelajaran Matematika



Jika bermanfaat, Mohon di Share ya !. kalau sempat sumbang tulisannya ya !
Makalah Peningkatan Keimanan dan Ketaqwaan dengan Pembelajaran Matematika

PENDAHULUAN

Dalam setiap pembahasan tentang pendidikan matematika, tidak akan terlepas dari pendidikan dalam arti luas. Pada kenyataannya, masalah pendidikan adalah salah satu bagian dari masalah-masalah pembangunan. Oleh karena itu, gerak langkah pendidikan tidaklah dapat dilepaskan dari arus perkembangan yang ada dalam masyarakat yang sedang membangun.

Agar Indonesia memiliki cukup warga negara yang berkualitas tinggi diperlukan sumber daya manusia yang berkualiltas yang mampu menguasai dan mengembangkan ilmu pengetahuan dan teknologi, dapat memanfaatkannya untuk kesejahteraan seluruh bangsa serta dapat menangkal pengaruh-pengaruh negatifnya.
Kenyataanya, banyak siswa yang unggul dalam prestasinya tetapi masih rendah dalam keimanan dan ketaqwaannya yang terwujud dalam moralnya. Banyak terjadi tawuran di antara pelajar yang hanya dipicu oleh masalah yang sebenarnya hanya sepele. Hal ini salah satunya disebabkan oleh pendidikan yang hanya menyampaikan materi pelajaran tanpa menanamkan nilai-nilai moral dan etika pada pembelajaran.


PEMBAHASAN

A. Obyek matematika adalah abstrak
Obyek langsung dari matematika adalah “fakta”, “konsep”, “operasi”, dan “prinsip” yang kesemuanya adalah abstrak. Sedangkan obyek tidak langsung di antaranya berupa kemampuan membuktikan teorema, kemampuan pemecahan masalah, transfer belajar, balajar tentang belajar, kemampuan inkuiri, dan disiplin diri (Bell, 1981: 108). Objek matematika adalah abstrak dan hanya ada dalam pemikiran manusia, sehingga tidak dapat disentuh atau diraba, yang dapat kita amati hanyalah simbol dari objek matematika.

Fakta dalam matematika adalah suatu kesepakatan yang disajikan dalam bentuk kata-kata atau simbol. Kita sudah terbiasa dengan simbol “2” dan kata “dua”. Pada saat kita mengatakan “dua” dengan sendirinya tergambar symbol “2”, demikian sebaliknya, jika kita disodori simbol “2” dengan sendirinya kita memadankan dengan kata “dua”. Kaitan simbol “2” dengan kata “dua” ini merupakan fakta. Konsep dalam matematika adalah ide abstrak untuk membantu mengklasifikasikan objek-objek atau benda-benda dan untuk menentukan apakah objek-objek atau benda-benda adalah contoh atau bukan contoh dari ide abstrak tersebut. Pengertian “dua” itu sendiri adalah konsep yang secara matematika diabstraksikan dari adanya ekivalensi antar himpunan-himpunan. Skill matematika adalah himpunan aturan dan perintah atau prosedur tertentu yang dikenal dengan algoritma. Untuk menunjukkan konsep tertentu digunakan batasan atau definisi. Prinsip dalam matematika adalah objek matematika yang lebih kompleks yang menyatakan keterkaitan antara dua atau lebih objek matematika.

B. Simbol yang kosong dari arti
Obyek matematika yang abstrak dituangkan dalam simbol-simbol. Simbol-simbol inilah yang akhirnya membentuk bahasa matematika. Bahasa matematika secara sederhana dapat digunakan sebagai sarana berkomunikasi, sarana tempat berpikir, dan mengekspresikan ide-ide secara teratur dan sistematis.
Menurut Soedjadi (1985: 15) simbol-simbol dalam matematika pada umumnya masih ”kosong dari arti” sehingga dapat diberikan arti kepada simbol-simbol itu sendiri sesuai dengan lingkup dan semestanya. Keberadaan simbol ini memberi peluang yang besar kepada matematika untuk digunakan dalam berbagai ilmu dan kehidupan nyata.

C. Kesepakatan dan pemikiran deduktif aksiomatik
Dari kedua karakteristik yang telah diuraikan di atas dapat disimpulkan bahwa dalam matematika terdapat banyak kesepakatan. Selain itu, dalam kehidupan sehari-hari pun sering dijumpai banyak kesepakatan-kesepakatan yang tertulis maupun kesepakatan yang tidak tertulis. Selanjutnya yang dimaksud dengan metode aksiomatik adalah pembenaran pernyataan P1 dengan menggunakan pernyataan P2 yang sebelumnya telah diterima benar. Sedangkan pembenaran pernyataan P2 dengan menggunakan pernyataan P3 yang sebelumnya telah diterima benar pula. Demikian seterusnya sehingga sampai pada suatu pernyataan P0 yang tidak lagi perlu pembuktian. Pernyataan P0 inilah yang disebut aksioma. Oleh karena aksioma digunakan selalu mempunyai sifat umum dan kemudian dapat diturunkan hingga memperoleh sifat-sifat khusus, maka struktur ini disebut pula berpola deduktif. Dan ini merupakan satu-satunya pola pikir yang diterima dalam matematika.

D. Konsisten
Setiap pernyataan atau definisi dalam matematika harus menggunakan istilah atau konsep terdahulu secara konsisten. Konsisten dalam arti maupun dalam nilai kebenarannya. Objek matematika yang abstrak tersebut disajikan di sekolah sesuai dengan kemampuan penalaran siswa. Hal inilah yang membuat objek matematika yang dipelajari diturunkan tingkat keabstrakannya agar mudah dipelajari dan dapat tertanam lama dalam pemikiran siswa.

E. Pendidikan Matematika
Tujuan pendidikan matematika dapat dilihat dalam tujuan kurikulum yang tertuang dalam setiap kurikulum masing-masing jenjang sekolah. Perumusan tujuan tersebut pastilah diusahakan untuk menopang tujuan institusional masing-masing jenis sekolah, dan tujuan pendidikan nasional sebagaimana tertuang dalam tap MPR. Selain itu tujuan kurikuler tersebut mengacu kepada teori Bloom tentang tujuan pendidikan yaitu meliputi ranah kognitif, afektif, dan psikomotor.

Tujuan Pendidikan Nasional tertuang dalam UU no 20 tahun 2003 yaitu Pendidikan Nasional berfungsi mengembangkan kemampuan dan membentuk watak serta peradaban bangsa yang bermartabat dalam rangka mencerdaskan kehidupan bangsa, bertujuan untuk berkembangnya potensi peserta didik agar menjadi manusia yang beriman dan bertakwa kepada Tuhan Yang Maha Esa, berakhlak mulia, sehat, berilmu, cakap, kreatif, mandiri, dan menjadi warga negara yang demokratis serta bertanggung jawab.
Tujuan pendidikan Matematika mulai dari SD hingga sekolah menengah atas adalah agar peserta didik memiliki kemampuan sebagai berikut;
  • Memahami konsep matematika, menjelaskan keterkaitan antar konsep dan mengaplikasikan konsep atau algoritma secara luwes, akurat, efisien, dan tepat dalam pemecahan masalah.
  • Menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika.
  • Memecahkan masalah yang meliputi kemampuan memahami masalah merancang model matematika, menyelesaikan modeldan menafsirkan solusi yang diperoleh.
  • mengomunikasikan gagasan dengan simbol, tabel, diagram, atau media lain untuk memperjelas keadaan atau masalah.
  • Memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah.
Untuk keperluan proses belajar mengajar di dalam kelas, tujuan kurikuler tersebut masih perlu dijabarkan ke dalam tujuan institusional (SK, dan KD) Pada tahap ini, kesulitan akan dialami terutama dalam usaha memadukan ranah afektif dan psikomotor sehingga dewasa ini lebih diperhatikan hanya pada ranah kognitif saja. Hal ini tentu akan mempengaruhi proses belajar mengajar di kelas yang tentunya juga akan mempengaruhi pendidikan matematika yang memuat nilai-nilai luhur.

Dengan menyelaraskan dan memadukan tujuan pembelajaran dari ranah kognitif, afektif, dan psikomotor, maka akan semakin meningkatkan keimanan dan ketaqwaan siswa pada Tuhan Yang Maha Esa yang merupakan salah satu aspek tujuan pendidikan yaitu mengembangkan kemampuan dan membentuk watak serta peradaban bangsa yang bermartabat. Untuk mewujudkan tujuan tersebut salah satunya adalah melalui pendidikan matematika, yaitu dengan mengintegrasikan beberapa nilai-nilai kepribadian dalam pembelajaran matematika.

Pendidikan akan melatih dan mengasah nalar manusia, sehingga dengan pendidikan maka kita akan semakin terbuka wawasan terhadap segala sesuatu yang ada di dunia ini. Nilai moral dari suatu materi pendidikan adalah keyakinan dari suatu individu atau budaya yang subjektif dan mungkin berbeda-beda bagi setiap orang dan budaya. Nilai moral seseorang dapat berkembang dan berubah-ubah setiap saat, sedangkan nilai moral dari suatu budaya yang terbagi atau diperlakukan sama bagi semua anggota atau kelompok berbeda dengan kelompok yang lainnya. Untuk menanamkan nilai-nilai dari moral pendidikan dapat diterapkan melalui pembelajaran matematika.

Ada beberapa nilai didik dalam pembelajaran matematika yang berkaitan dengan karakteristik dari matematika yang diharapkan dapat meningkatkan keimanan dan ketaqwaan, di antaranya:

1. Kesepakatan
Setiap orang yang mempelajari matematika secara sadar atau tidak sadar telah menggunakan kesepakatan-kesepakatan tertentu. Kesepakatan ini terdapat dalam matematika yang rendah maupun yang tinggi, dapat berupa simbol, istilah, definisi, ataupun aksioma.

Contoh.
a. Penggunaan simbol bilangan 1, 2, 3, 4, ... dan seterusnya.
b. Pengertian tentang persegi
c. Pengertian tentang titik, garis, lengkungan, dan lain-lain

Dalam kehidupan sehari-hari, kadang tanpa kita sadari ada banyak kesepakatan berupa norma-norma baik yang tertulis maupun yang tidak tertulis yang harus dipatuhi oleh warga masyarakat dalam lingkungan tertentu. Jika seseorang berperilaku tidak sesuai dengan suatu kesepakatan dalam lingkungan tertentu, pastilah akan dianggap melanggar aturan yang tentu akan mendapatkan sangsi tertentu. Seseorang yang telah dibiasakan belajar matematika yang penuh dengan kesepakatan yang harus ditaati, pastinya akan mudah memahami perlunya kesepakatan dalam hubungan masyarakat dan mempunyai kesadaran yang lebih tinggi untuk mentaati kesepakatan tersebut. Nilai inilah yang dapat ditanamkan dalam pembelajaran matematika.

2. Ketaatasasan/konsistensi
Dalam pembahasan ini yang dimaksud dengan ketaatasasan/konsistensi adalah tidak dibenarkannya adanya kontradiksi sesuai dengan karakteristik dari matematika sendiri. Contohnya, untuk setiap anggota himpunan bilangan bulat, berlaku bahwa jumlah dari 2 bilangan bulat adalah bilangan bulat. Maka hasil dari 3 + 7 haruslah bilangan bulat. Dalam kehidupan sehari-hari sangat diperlukan adanya sikap dan nilai konsistensi ini, sehingga tidak akan banyak terjadi benturan-benturan dalam berhubungan dengan anggota masyarakat. 

Dalam kehidupan berbangsa dan bernegara telah ada aturan atau undang-undang yang harus ditaati oleh segenap warga Indonesia. Jika setiap warga negara telah terbiasa dengan berpikir matematika maka tidak akan banyak orang-orang yang melanggar aturan, sehingga tercipta negara yang aman dan damai. Oleh karena itu, setiap materi dalam pembelajaran matematika harus dapat menanamkan nilai konsistensi ini untuk membentuk tata nalar dan kepribadian siswa.

3. Deduksi
Secara sederhana, sesuai dengan karakteristik dari matematika, makna deduksi adalah proses menurunkan atau menerapkan pengertian atau sifat umum ke dalam keadaan khusus. Dalam pembahasan matematika, pola pikir deduktif inilah yang dapat diterima. Pola pikir induktif, sebenarnya juga dapat diterima sepanjang diperlukan untuk menyesuaikan bahan ajar dengan perkembangan intelektual siswa. 

Dalam kehidupan berbangsa dan bernegara, segala peraturan perundang-undangan diatur secara hirarkhis mulai dari Pancasila, UUD 1945, UU, Perpu, PP, Keppres, Kepmen, dan seterusnya. Dalam hal ini, peraturan di bawahnya merupakan penjabaran dari peraturan di atasnya atau yang lebih tinggi. Kebenaran dari peraturan yang satu tentunya merujuk kepada kebenaran peraturan yang di atasnya. Dengan demikian, jelaslah bahwa dalam kehidupan berbangsa dan bernegara juga diperlukan pola pikir deduktif

4. Semesta
Salah satu karakteristik dari matematika yaitu simbol-simbol yang dikosongkan dari maknanya. Misalnya, apakah arti x, y, z, itu? Hal ini dapat diartikan bermacam-macam tergantung si pemakai, apakah bilangan, vektor, pernyataan, atau yang lainnya. Hal ini, menunjukkan adanya lingkup pembelajatan yang dapat juga disebut semesta pembicaraan. Dalam pembelajaran matematika disadari atau tidak terdapat contoh atau soal yang sangat memperhatikan semesta. Bila semesta yang ditetapkan tidak diperhatikan, maka akan sangat besar kemungkinan arti yang diberikan akan salah.


DAFTAR PUSTAKA
  • Bell, Frederick H. 1981. Teaching and Learning mathematics (in Secondary Schools). Wm. C. Brown Company. Dubuque. Iowa
  • Soedjadi, R. 1995. Matematika Sekolah Lanjutan Tingkat Pertama sebagai wahana pendidikan dan pembudayaan penalaran. Surabaya
  • __________. 2009. Al Qur’an. Departemen Agama RI
  • __________. 2006. Kerangka Dasar Keilmuan dan Pengembangan Kerikulum UIN Sunan Kalijaga Yogyakarta. Pokja Akademik.
  • __________. 2006. Kurikulum KTSP. Departemen Pendidikan Nasional. Jakarta
  • __________. 2003. UU no 20 tahun 2003 tentang Sistem Pendidikan Nasional. Deprtemen Pendidikan . Jakarta.


Makalah atau artikelnya sudah di share, makasih ya !

Mau Makalah Gratis! Silahkan Tulis Email Anda.
Print PDF
Previous
Next Post »
Copyright © 2012 Aneka Makalah - All Rights Reserved